I am a post-doctoral researcher at the University of Göttingen working in Michael Waldmann’s Lab of Cognitive and Decision Sciences. I’m very much interested in how minds learn and reason about the causal relationships in the world. Given that causal relations are neither directly observable nor logically deducible, how do reasoners manage to learn about causes and effect so successfully? How do they use this knowledge to make predictions, diagnoses, or to explain things? I’m also fascinated by the more general question of how minds form and use categories.
On this website I share information about my academic life. You’ll find an up-to-date CV, my publication list, and information about recent/ upcoming presentations (e.g., conference talks).
Winter terms (2014/15 until 2021/22): Quantitative Methods I Seminar As part of the first year undergraduate psychology statistics class
Summer terms (2015 until 2022): Quantitative Methods II Seminar As part of the first year undergraduate psychology statistics class
Winter term 2022/23: Seminar on the principles of learning and behavior As part of the second year undergraduate psychology module “Allgemeine Psychology II” (General Psychology II)
The seminar Quantitative Methods I covers basics of research design and the application of hypothesis testing, data visualisation, probability theory, descriptive and inferential data analysis, and power analyses. Quantitative Methods II focuses on the General Linear Model and its applications (regression, ANOVA, contrast analyses, multilevel models). Students learn to apply these methods with R and RStudio.
An overview of the teaching resources (including teaching videos) is given at: https://quantigoettingen.github.io/quantigoettingen
I also supervised a number of Bachelor and Master projects (see my CV for a list).
Stephan, S. (2024). Reasoning about actual causation in reversible and irreversible causal structures. Journal of Experimental Psychology: Learning, Memory, and Cognition. Advance online publication
Stephan, S. (2023). Revisiting the narrow latent scope bias in explanatory reasoning. Cognition, 241, 105630.
Stephan, S., Engelmann, N., & Waldmann, M. R. (2023). The perceived dilution of causal strength. Cognitive Psychology, 140, 101540.
Stephan, S., & Waldmann, M. R. (2022). The role of mechanism knowledge in singular causation judgments. Cognition, 218, 104924.
Stephan, S., Tentori, K., Pighin, S., & Waldmann, M. R. (2021). Interpolating causal mechanisms: The paradox of knowing more. Journal of Experimental Psychology: General, 150(8), 1500-1527.
Stephan, S., Mayrhofer, R., & Waldmann, M. R. (2020). Time and singular causation - a computational model. Cognitive Science, 44, e12871.
I’m passionate about online experiments and created a small series of YouTube-Tutorials where I show how to create a “typical cognitive science” experiment using JsPsych.
Flash talk presentation at CogSci 2022: The Perceived Dilution of Causal Strength (July 2022, Toronto [remote])
Poster presentation at SPP & ESPP: The Perceived Dilution of Causal Strength (July 2022, Milan, Italy)
Invited Talk [virtual] at the London Judgment and Decision Making Seminar: The interplay between covariation, temporal, and mechanism information in singular causation judgments (Jan 2021, London)
Invited Talk [virtual] at the Computational Cognitive Science Group at the University of Edinburgh: The interplay between covariation, temporal, and mechanism information in singular causation judgments (Jan 2021, London)
Poster presentation [virtual] at CogSci 2021: Evaluating general versus singular causal prevention (July 2021, Vienna)
Invited Talk [virtual] at Becog Colloquium: Computational/ mathematical modeling in cognitive science (April 2021, Göttingen)
Invited Talk [virtual] at the CPI Lab Tübingen: The interplay between covariation, temporal, and mechanism information in singular causation judgments (Jan 2021, London)
Talk at CRISP-Lab: What made this happen? A computational modeling approach to answering causal queries about singular cases (Dez 2019, Heidelberg)
Talk at ANaP-Lab: Computational Modeling and Progress in Cognitive Science (Oct 2019, Göttingen)
Talk at ESPP 2019: The Role of Effect and Sample Size in Causal Induction (Sep 2019, Athens)
Poster at Euro CogSci 2019: The Role of Effect and Sample Size in Causal Induction (Sep 2019, Bochum)
Stephan, S., & Waldmann, M. R. (2022). The interplay between covariation, temporal, and mechanism information in singular causation judgments. In A. Wiegmann, & P. Willemsen (Eds.). Advances in Experimental Philosophy of Causation. London, UK: Bloomsbury Press.
Stephan, S., & Waldmann, M. R. (2022). The role of mechanism knowledge in singular causation judgments. Cognition, 218, 104924.
Skovgaard-Olsen, N., Stephan, S., & Waldmann, M. R. (2021). Conditionals and the hierarchy of causal queries. Journal of Experimental Psychology: General, 150, 2472–2505.
Gerstenberg, T., & Stephan, S. (2021). A counterfactual simulation model of causation by omission. Cognition, 216, 104842.
Stephan, S., Placì, Sarah & Waldmann, M. R. (2021). Evaluating general versus singular causal prevention. In T. Fitch, C. Lamm, H. Leder, & K. Tessmar (Eds.), Proceedings of the 43rd Annual Conference of the Cognitive Science Society. (pp. 1402–1408). Austin, TX: Cognitive Science Society.
Stephan, S., Tentori, K., Pighin, S., & Waldmann, M. R. (2021). Interpolating causal mechanisms: The paradox of knowing more. Journal of Experimental Psychology: General, 150(8), 1500-1527.
Stephan, S., & Waldmann, M. R. (2020). Causal scope and causal strength: The number of potential effects of a cause influences causal strength estimates. In S. Denison., M. Mack, Y. Xu, & B.C. Armstrong (Eds.), Proceedings of the 42th Annual Conference of the Cognitive Science Society (pp. 3426 - 3432). Austin, TX: Cognitive Science Society.
Stephan, S., & Waldmann, M. R. (2020). On causal claims, contingencies, and inference: How causal terminology affects what we think about the strength of causal links. In S. Denison., M. Mack, Y. Xu, & B.C. Armstrong (Eds.), Proceedings of the 42th Annual Conference of the Cognitive Science Society (pp. 3419 - 3425). Austin, TX: Cognitive Science Society.
Stephan, S., Mayrhofer, R., & Waldmann, M. R. (2020). Time and singular causation - a computational model. Cognitive Science, 44, e12871.
Stephan, S., Mayrhofer, R., & Waldmann, M. R. (2018). Assessing singular causation: The role of causal latencies. In T.T. Rogers, M. Rau, X. Zhu, & C. W. Kalish (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (pp. 1080 - 1085). Austin, TX: Cognitive Science Society.
Stephan, S., & Waldmann, M. R. (2018). Preemption in singular causation judgments: A computational model. Topics in Cognitive Science, 10, 242–257.
Stephan, S., & Waldmann, M. R. (2017). Preemption in singular causation judgments: A computational model. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (pp. 1126-1131). Austin, TX: Cognitive Science Society. (Computational Modeling: Higher Level Cognition Award of the Cognitive Science Society).
Stephan, S., Willemsen, P. & Gerstenberg, T. (2017). Marbles in inaction: Counterfactual simulation and causation by omission. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (pp. 1132-1137). Austin, TX: Cognitive Science Society.
Nagel, J., & Stephan, S. (2016). Explanations in causal chains: Selecting distal causes requires exportable mechanisms. In A. Papafragou, D. Grodner, D. Mirman, & J.C. Trueswell (Eds.), Proceedings of the 38th Annual Conference of the Cognitive Science Society (pp. 806-811). Austin, TX: Cognitive Science Society.
Stephan, S., & Waldmann, M. R. (2016). Answering causal queries about singular cases. In A. Papafragou, D. Grodner, D. Mirman, & J.C. Trueswell (Eds.), Proceedings of the 38th Annual Conference of the Cognitive Science Society (pp. 2795-2801). Austin, TX: Cognitive Science Society.
Copyright © 2020 Simon Stephan. All rights reserved.